ar X iv : q ua nt - p h / 04 09 18 4 v 2 2 5 N ov 2 00 4 Sets of Mutually Unbiased Bases as Arcs in Finite Projective Planes ?

نویسنده

  • Michel Planat
چکیده

This note is a short conceptual elaboration of the conjecture of Saniga et al (J. Opt. B: Quantum Semiclass. 6 (2004) L19-L20) by regarding a set of mutually unbiased bases (MUBs) in a d-dimensional Hilbert space as an analogue of an arc in a (finite) projective plane of order d. Complete sets of MUBs thus correspond to (d+1)-arcs, i.e., ovals. In the Desarguesian case, the existence of two principally distinct kinds of ovals for d = 2n and n ≥ 3, viz. conics and non-conics, implies the existence of two qualitatively different groups of the complete sets of MUBs for the Hilbert spaces of corresponding dimensions. A principally new class of complete sets of MUBs are those having their analogues in ovals in non-Desarguesian projective planes; the lowest dimension when this happens is d = 9.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q ua nt - p h / 04 09 18 4 v 1 2 7 Se p 20 04 Sets of Mutually Unbiased Bases as Arcs in Finite Projective Planes ?

This note is a short elaboration of the conjecture of Saniga et al (J. Opt. B: Quantum Semiclass. 6 (2004) L19-L20) by regarding a set of mutually unbiased bases (MUBs) in a d-dimensional Hilbert space, d being a power of a prime, as an analogue of an arc in a (Desarguesian) projective plane of order d. Complete sets of MUBs thus correspond to (d+1)-arcs, i.e., ovals. The existence of two princ...

متن کامل

ar X iv : m at h - ph / 0 50 60 57 v 3 8 N ov 2 00 5 Hjelmslev Geometry of Mutually Unbiased Bases

The basic combinatorial properties of a complete set of mutually unbiased bases (MUBs) of a q-dimensional Hilbert space Hq, q = p with p being a prime and r a positive integer, are shown to be qualitatively mimicked by the configuration of points lying on a proper conic in a projective Hjelmslev plane defined over a Galois ring of characteristic p and rank r. The q vectors of a basis of Hq corr...

متن کامل

ar X iv : m at h - ph / 0 50 60 57 v 2 2 6 Ju l 2 00 5 Hjelmslev Geometry of Mutually Unbiased Bases

The basic combinatorial properties of a complete set of mutually unbiased bases (MUBs) of a q-dimensional Hilbert space Hq, q = p with p being a prime and r a positive integer, are shown to be qualitatively mimicked by the configuration of points lying on a proper conic in a projective Hjelmslev plane defined over a Galois ring of characteristic p and rank r. The q vectors of a basis of Hq corr...

متن کامل

ua nt - p h / 04 11 09 8 v 1 1 5 N ov 2 00 4 A class of 2 N × 2 N bound entangled states revealed by non - decomposable maps

We use some general results regarding positive maps to exhibit examples of non-decomposable maps and 2 ×2N , N ≥ 2, bound entangled states, e.g. non distillable bipartite states of N+N qubits.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008